1- NORME D'UN VECTEUR

<u>Propriété</u>:

Soit un vecteur \vec{u} dont les coordonnées dans un repère orthonormé $(0, \vec{\iota}, \vec{\jmath})$ sont $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$. La norme $\|\vec{u}\|$ du vecteur \vec{u} correspond à sa longueur. En appliquant le théorème de Pythagore sur le triangle rectangle ci-contre,

on obtient : $\|\overrightarrow{u}\|^2 = x^2 + y^2$

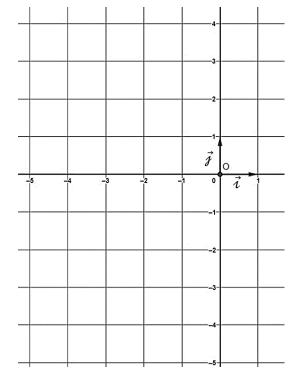
On en déduit que :

$$\vec{u} \qquad \vec{v} \qquad$$

$$\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$$

<u>Exemple</u>: Soit les points A, B et C dont les coordonnées dans un repère $(0, \vec{\imath}, \vec{\jmath})$ sont A(-4; -1), B(0; -5) et C(1; 4)

- 1- Placer les points dans le repère ci-contre.
- 2- Calculer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{BC} et \overrightarrow{CA} .



3- Montrer que $\|\overrightarrow{AB}\| = AB = \sqrt{32}$, $\|\overrightarrow{BC}\| = BC = \sqrt{82}$ et $\|\overrightarrow{CA}\| = CA = \sqrt{50}$:

4- En appliquant la réciproque du théorème de Pythagore, montrer que le triangle ABC est rectangle en A :

2- DISTANCE ENTRE 2 POINTS A ET B

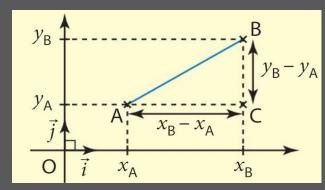
<u>Propriété</u>:

Soit les points \overline{A} et \overline{B} de coordonnées :

$$A(x_A; y_A)$$
 et $B(x_B; y_B)$

Les coordonnées du vecteur \overrightarrow{AB} sont

alors:
$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$$

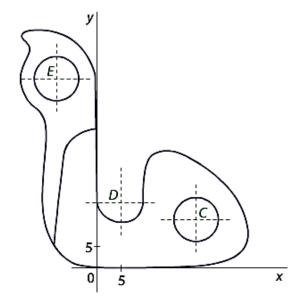


La distance AB est égale à la norme du vecteur \overrightarrow{AB} : $AB = \|\overrightarrow{AB}\|$

On a donc :
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Exemple:

Une machine à commande numérique fabrique des supports de dérailleurs de vélo, dont le plan est donné sur la figure cicontre. Les coordonnées des points C et E sont C(21;10) et E(-9;41). L'unité est le mm. Calculer la distance CE en mm :



3- DISTANCE D'UN POINT A UNE DROITE

Distance entre un point A et une droite (d):

La distance entre A et (d) est la plus petite distance entre A et un point de (d).

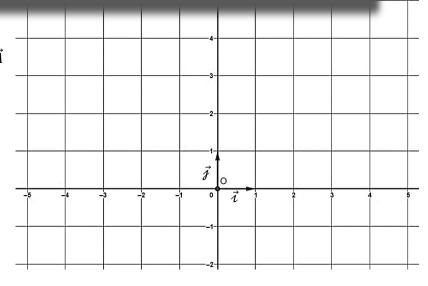
Propriété:

La distance entre A et (d) est la distance AH identifiée sur la figure cicontre.

Distance du point A
à la droite (d)

Le point H tel que $H \in (d)$ et $(AH) \perp (d)$ est appelé *projeté* orthogonal du point A sur (d).

- 1- Placer les points dans le repère ci-contre.
- 2- Calculer les coordonnées des vecteurs \overrightarrow{CA} et \overrightarrow{CB} .

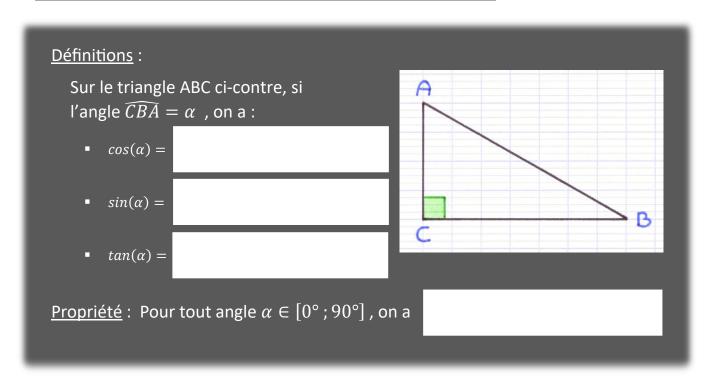


- 3- Calculer les distances CA et CB.
- 4- Le triangle ABC est rectangle en C. Montrer que l'aire A de ce triangle est A=24:
- 5- Montrer que la distance AB est AB = 10
- 6- Tracé le projeté orthogonal H du point C sur la droite (AB).

5) et

- 7- Exprimer l'aire \mathcal{A} du triangle ABC en fonction de la base AB et de la hauteur CH de ce triangle.
- 8- En déduite la valeur de CH, qui est la distance entre C et la droite (AC).

4- RELATIONS TRIGONOMETRIQUES DANS UN TRIANGLE RECTANGLE



<u>Application</u> : Calcul de la profondeur d'un cratère sur la lune :

