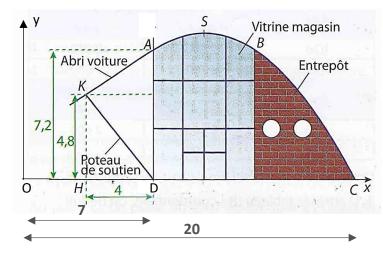
TD – Géogébra

MATRICES

Exercice 1 : Une société désire construire un magasin. L'architecte propose à l'entrepreneur la devanture suivante :

On veut tracer sur Géogébra, le profil du toit. L'abri voiture est un segment de droite [KA]. Le reste du toit entre les points A et S a une forme de parabole.

La droite (KA) est la courbe représentative d'une fonction affine f définie par : $f(x) = d \ x + e$; d et e étant deux nombres réels.



La parabole entre A et C est la courbe représentative \mathcal{C}_g

d'une fonction g avec : $g(x) = a x^2 + b x + c$; a , b , c étant 3 nombres réels

- 1- Montrer que le coefficient directeur de la droite (KA) est : 0,6 . En déduire la valeur de d :
- 2- La droite (KA) passe par le point A de coordonnées A(7 , 7.2). On a donc f(7) = 7.2. Résoudre cette équation et en déduire la valeur de e:
 - \Rightarrow Sur géogébra, tracer la portion de la courbe représentative de f pour 3 < x < 7, en écrivant dans la ligne de saisie : f(x) = fonction [0.6 x + 3 , 3 , 7]
- 3- Calculer la fonction dérivée g'(x) en fonction des constantes réelles : a, b et c :
- 4- La courbe C_g passe par le point de coordonnées A(7 , 7.2). On a donc g(7)=7.2 En déduire une relation (L₁) entre a, b et c:
- 5- Au point A, la courbe C_g est tangente à la droite (AK). On a donc g'(7)=0.6 En déduire une relation (L₂) entre a, b et c:
- 6- La courbe \mathcal{C}_g passe par le point C de coordonnées C(20 ; 0). On a donc g(20)=0 En déduire une relation (L₃) entre a, b , c :

Pour trouver les constantes a, b, c, on est ainsi amené à résoudre le système d'équations suivant :

$$49 a + 7 b + c = 7.2$$

 $14 a + b + 0 c = 0.6$
 $400 a + 20 b + c = 0$

On utilise une méthode matricielle pour résoudre ce système. On crée les matrices :

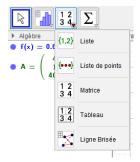
On utilise une methode matricielle pour resolutre ce système. On cree les matrices :
$$A = \begin{bmatrix} 49 & 7 & 1 \\ 14 & 1 & 0 \\ 400 & 20 & 1 \end{bmatrix} \; ; \; B = \begin{pmatrix} 7.2 \\ 0.6 \\ 0 \end{pmatrix} \text{et } \; X = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \; . \; \text{On résout l'équation} : A \times X = B \; \text{qui donne} : \; X = A^{-1} \times B$$

Sur Géogébra:

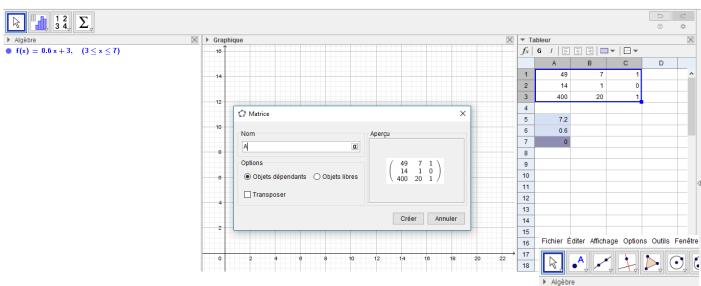
- ⇒ Afficher une fenêtre Tableur en cochant *Tableur* dans l'onglet *Affichage*
- ⇒ Dans la partie Tableur saisir les 9 nombres de la matrice A et les 3 de la matrice B.

fx G / Ξ Ξ □ ▼ ⊞ ▼				
	Α	В	С	
1	49	7	1	
2	14	1	0	
3	400	20	1	
4				
5	7.2			
6	0.6			
7	0			
8				

⇒ Sélectionner les 9 termes de A et cliquer sur l'onglet Matrice situé en haut et gauche de la fenêtre :



⇒ Compléter le widget de dialogue en précisant le nom de la matrice :

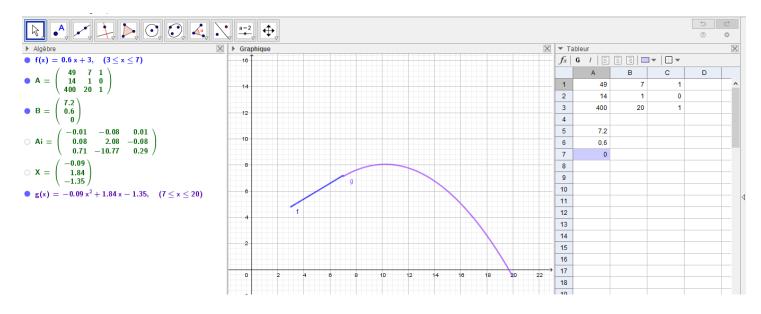


- ⇒ Créer de même la matrice B
- \Rightarrow Dans la ligne de saisie, afficher la matrice A^{-1} en écrivant : Ai = Inverser(A)
- \Rightarrow Dans la ligne de saisie, calculer la matrice inconnue $X=A^{-1}\ imes B$ en X = Inverser(A)*Bécrivant :

$$\begin{array}{l} \bullet \quad f(x) = 0.6 \; x + 3, \quad (3 \leq x \leq 7) \\ \bullet \quad A = \begin{pmatrix} 49 & 7 & 1 \\ 14 & 1 & 0 \\ 400 & 20 & 1 \end{pmatrix} \\ \bullet \quad B = \begin{pmatrix} 7.2 \\ 0.6 \\ 0 \end{pmatrix} \\ \bullet \quad Ai = \begin{pmatrix} -0.01 & -0.08 & 0.01 \\ 0.08 & 2.08 & -0.08 \\ 0.71 & -10.77 & 0.29 \end{pmatrix} \\ \bullet \quad X = \begin{pmatrix} -0.09 \\ 1.84 \\ -1.35 \end{pmatrix}$$

 \Rightarrow Dans la ligne de saisie, tracer la courbe \mathcal{C}_g pour 7 < x < 20 en écrivant :

$$g(x) = fonction [-0.09 x^2 + 1.84 x - 1.35, 7, 20]$$



La courbe tracée ne respecte pas précisément les 3 conditions (courbe passant par A et C et tangente en A à l'abris) car les valeurs de a, b, c calculées sont des valeurs approchées au centième.

Afin d'avoir toute la précision, saisir : $h(x) = X(1) * x^2 + X(2) * x + X(3)$. Par contre, Géogébra n'autorise alors pas le tracé partiel de la courbe pour 7 < x < 20. Il est par contre possible, dans la partie tableur, de modifier les 3 termes de la matrice B qui correspondent respectivement à l'ordonnée du point A, à la pente de la tangente en A et à l'ordonnée de C. Essayer de modifier ces 3 valeurs pour voir la conséquence sur la courbe \mathcal{C}_q .

⇒ Enregistrer et fermer le fichier.

Exercice 2:

 \Rightarrow Ouvrir un fichier Géogébra et saisir le tracé des 3 segments ci-contre : m(x)=fonction[x + 2, -3,-2] ; n(x)=fonction[-2, 0,2]; p(x)=fonction[-x + 8, 4,6].

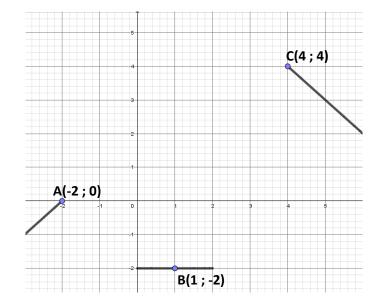
On se propose de tracer une courbe polynomiale \mathcal{C}_h représentative d'une fonction h qui respecte les conditions suivantes :

- \mathcal{C}_h passant par le point A (-2 ; 0)
- \mathcal{C}_h tangente en A à une droite de pente 1
- \mathcal{C}_h passant par le point B (1 ; -2)
- \mathcal{C}_h tangente en B à une droite horizontale
- \mathcal{C}_h passant par le point C (4 ; 4)
- \mathcal{C}_h tangente en C à une droite de pente -1

Ayant 6 conditions à respecter, on suppose que l'expression de h est :

$$h(x) = a x^5 + b x^4 + c x^3 + d x^2 + e x + f$$

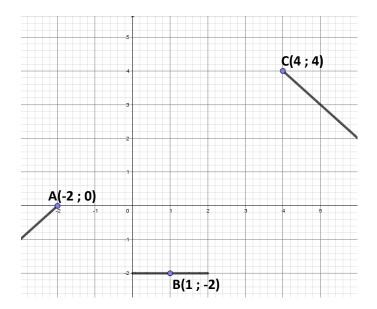
 a, b, c, d, e, f étant 6 constantes réelles.



- 1- Donner l'expression de h'(x)en fonction des constantes a, b, c, d, e:
- 2- Ecrire la relation qui doit lier les constantes a, b, c, d, e, f pour avoir \mathcal{C}_h passant par le point A

- 3- Ecrire la relation qui doit lier les constantes a, b, c, d, e, f pour avoir h'(-2) = 1
- 4- Ecrire la relation qui doit lier les constantes a, b, c, d, e, f pour avoir \mathcal{C}_h passant par le point B
- 5- Ecrire la relation qui doit lier les constantes a, b, c, d, e, f pour avoir h'(1) = 0
- 6- Ecrire la relation qui doit lier les constantes a, b, c, d, e, f pour avoir \mathcal{C}_h passant par le point C
- 7- Ecrire la relation qui doit lier les constantes a, b, c, d, e, f pour avoir h'(4) = -1
- 8- Utiliser la méthode matricielle pour calculer ces 6 constantes : Ecrire l'équation matricielle à résoudre (avec des matrices à 6 lignes) :

9- Saisir la fonction h(x) sur géogébra et vérifier que les contraintes imposées au départ ont bien été respectées. Tracer ci-contre la courbe entre A et C :



10- Dans la partie tableur essayer de modifier les 6 termes de la matrice B qui correspondent aux ordonnées des points A, B, C et aux pentes en ces points. Voir si la courbe \mathcal{C}_h « répond correctement ».